NAMED ENTITIES AND THEIR TREATMENT
IN A COMPUTATIONAL LINGUISTIC IMPLEMENTATION

CSERNYI GABOR
Department of English Linguistics, University of Debrecen, Hungary

Abstract: The aim of this paper is to provide an overview of the nature of names
that are relevant for rule-based (syntactic and morphosyntactic) parsing, and it
also presents a method for the treatment of names using the framework of Lexical-
Functional Grammar, in connection with a Hungarian treebank project.

Keywords: computational linguistics, Hungarian, Lexical-Functional Grammar,

named entity

1. Introduction

The study of named entities (or names, in general terms) is a well-
known field of Natural Language Processing (NLP) and as Nadeau and
Sekine (2007) also reports, it has been dealt with in the literature as a
distinct area since the 1990s with respect to the recognition and
classification of names in raw text (i.e. Named Entity Recognition, or NER,
for short). However, it is not only their identification and categorization that
appear to be challenging issues but the treatment of names in syntactic and
semantic models, as well, raising serious questions both from the theoretical
and the computational linguistic perspective.

This paper, with examples from English and Hungarian, discusses
those properties of names that might cause problems in terms of writing
computational grammars for parsing, and outlines a computational
implementation using the theoretical framework of Lexical-Functional

Grammar. The need for an adequate, consistent analysis of names is also to

be reflected by the results of an experiment carried out on the Hungarian

Szeged Treebank.

2. The concept of names

In order to give an overall account of names regarding both
recognition and processing (or parsing), it is essential first to give a
definition of names, and to specify those characteristics of names that NLP
applications should be able to deal with. Nevertheless, it must be pointed
out that named entity recognition and parsing structures containing named
entities will be distinctly discussed, with special emphasis on the latter
issue. This section is concerned with the concept name, and with concrete
examples, reviews those factors of names that applications of both types

have to account for.

2.1. Whatis a name?

From the theoretical and the computational linguistic aspect, and for
the purpose of text processing it is generally desirable to outline what
phenomenon should be considered a name. When providing a definition the
focus of attention, by necessity, should be limited to those cases which pose
problems to parsing systems and to computer-based, automated
identification that can even allow for tagging.

(1) Bank of England

2) the center of financial issues

Comparing (1) with (2) in this respect, the field of interest is rather
examples like (1) representing proper names (or rigid designators, in
Kripke’s (1980) words), while examples demonstrated by (2) are to be
excluded from this analysis. Phrases as (2) should not be a difficult task to

handle syntactically without special lexicons, as opposed to examples like
(1) that in the majority of cases require special gazetteers (i.e.: lexicon of
names, especially geographical ones).

This paper adopts Simon’s (2008) definition, according to which an
expression can only be a name if it refers to an entity in a unique way.
Consequently, those expressions or phrases that are not unique (though refer
to unique entities) are not to be identified as names. Therefore, along these

lines, (1) is a name, while (2) is not.

2.2. General characteristics

Other facts characteristics of names are that they can often be
multiwords (e.g.: European Union), and that they can appear in text as
acronyms (e.g.: UNESCO). Regarding constituency issues, it is also
common that they occur with a common noun which describes the type of
entity the name itself refers to, like in (3). Such common nouns, again,
following Simon (2008), are not to be treated as part of the name, as
opposed to counterexamples in which the common noun is
“institutionalized” with the name as one, reflected by (4).
3) Mississippi river
4) Black Sea
(5) the wonderful Grand Canyon
Moreover, specifiers and other modifiers of noun phrases containing a name
as their head exemplified in (5) are generally not to be taken as parts of the
name. It is not the task of named entity recognition to identify names
together with other constituents belonging to the same phrase, rather the
head alone (that is the name itself). (However, as will be seen, named entity

recognizers do not necessarily operate on syntactic categories or pre-

syntactic analyses.) Furthermore, parsers are expected to account for these
constituents at the syntactic level of analysis in such a way that the name
itself should be understood as one syntactic (and semantic) unit on its own,

functioning as a head.

3. Natural language processing and names
3.1. Recognition and classification

In the last decade numerous named entity recognition tasks were
carried out to show improving results regarding the identification and even
classification of names in raw text. The machine learning oriented,
statistics-based models used in the experiments range from artificial neural
networks (ANN) to decision trees and support vector machines (SVM). The
main idea behind these systems is that after a learning phase in which these
systems are exposed to (annotated) corpora especially designed for the
purpose of training, they derive generalizations based on which they can
recognize names in plain text and sort them into categories as organizations,
personal names, etc. A sample comparing the accuracy of such models
trained on the named entity subcorpus of the Hungarian Szeged Treebank
can be found in Szarvas et al. (2006).

Unlike some of these named entity recognizers that are mainly
language-dependent, Varga and Simon (2007) outlines a maximum-entropy
method that, as claimed, is more flexible concerning language-dependency
issues and considers several factors (of name candidates) including
positional and morphological ones, making the model work quite efficiently
and with high precision. For details, see Varga and Simon (2007).

As for the parsing side, where structures should be morphologically

and syntactically (and semantically) adequately processed and analyzed,

rule-based systems (i.e.: applications that use phrase-structure rules and
operate on categories when parsing) tend to be reliable, better-known and
more popular. However, the challenge in these cases, as will be seen, is to
prepare the parser to provide analysis of structures possibly containing
names (single words, multiwords and acronyms) that are, by default, not
part of their core or basic lexicon. The real problem is that, if such a system
is not able to analyze fragments (phrase/clause chunks), an unknown
expression in the text, like a name, might result in an output without a single
parse. The following subsection discusses a Hungarian LFG-approach and

its implementational capabilities in relation with names.

3.2. HunGram: an implementational LFG-approach

HunGram (Hungarian Grammar) is a computational linguistic
project that aims at developing a Lexical-Functional Grammar (LFG)
analysis of the Hungarian language and using it for building a 1.5 million
word treebank. HunGram was initiated as part of the Parallel Grammar
(ParGram) research project that is an international cooperation of
generative and computational linguists within the theory of LFG. The main
idea of the cooperation is to analyze more and more languages and develop
large-scale grammars using the framework of LFG. As the theory was also
designed for computational application, its main principles are strong
lexicalism, modularism, rule system based on mathematical formalism and
parallel architecture. (For details on LFG, see Bresnan 2001, on ParGram,
see http://pargram.b.uib.no; on the HunGram project, see Laczko — Rakosi —
T6th 2010, and http://hungram.unideb.hu)

The Xerox Linguistics Environment (XLE), the implementational

platform (Butt et al. 1997), is a rich system comprising a series of tools that

make it possible to parse sentences. The architecture reflects a modular
pattern (see Figure I). First the sentence to be parsed is tokenized by finite-
state transducers, after which the tokens are sent to the morphological
component. Morphological analysis is followed by lexical lookup in the
manually created and tagged lexicon that stores subcategorization frames
and semantic information. The /exicon, with special lexical entries including
grammatical functional annotations as well, is a crucial part of the system,
this is the module on which the essence of the theory lies. Its importance
together with the morphological analyzer is even more emphasized in case

of highly inflectional languages like Hungarian.

TOKENIZER MORPHOLOGICAL LEXICON SYNTAX,
ANALYZER SEMANTICS

tokenization |—> morphological —>| lexical lookup |——>| chart parsing

analysis

Figure 1: Parsing with XLE

The morphological features the morphological analyzer provides are
mapped to lexical entries which, in turn, are used by the chart parser to
determine the syntactic structures available. (If no morphological analyzer
exists, the tokens are forwarded directly to the lexicon after tokenization. In

this case, the lexicon has to be powerful, containing all the forms.)

3.2.1. Names in the model

In relation with names, the task in such a model is either to build a
rich lexicon of names, or to prepare the morphological component in that it
should produce the relevant morphological analysis for names as well
including inflections, plus it should also add a distinct feature tag marking

that the particular token is a name. The output of an analysis of this kind is

demonstrated by the Hungarian example Eurdpai Unioban ‘in the European
Union’ in (6), in which the stem is Eurdpai Unid and it is in inessive case.
(6) Eurdpai Unioban: Europai Unid +Noun +Prop +Sg +Ine

However, as this example suggests, and as it has been claimed in
section 2.2, names are often multiwords, which means they are to be treated
as one token, a fact to prepare the tokenizer for. Although this component,
by default, takes every word as a separate, single token, it is possible to
configure XLE through the grammar configuration file not to process
multiword tokens as individual items in case they constitute a multiword
that is either listed in the lexicon and/or the morphology accounts for it.

Morphologies relying on finite-state techniques have proved to be
quite efficient in the ParGram projects because of the fact that they are quite
fast, they can provide multiple analyses in case of ambiguity, and that they
can easily be extended by additional transducers like guessers (cf. Kaplan et
al. 2004). Embedding names into already built morphologies has the
advantage that there is no need for including all the names in all possible
forms (concerning inflections), only stems have to be inserted under the
appropriate category or group (which can serve as a filter to what inflections
can be accepted with the name). In addition, guesser transducers can also
promote parsing results. All these, however, require having a rich
morphological analyzer of the particular language and more importantly, the
base lexicon of this module (that is, by nature, completely different from the
lexicon containing entries with grammatical features and predicate-relations
as in (7)) should also be accessible.

Another possibility apart from the morphological solution is to put
the names into the lexical component (i.e.: build a lexicon for names).

While (6) gave an example for how names should be represented in the

morphological component, (7) is a counterpart of it in the form of a lexical
entry.
(7) Eurépai Uniéban N (T PRED) = ‘Eurépai Unid’

(TNUM) =sg

(T PERS) =3

(T CASE) =ine

@(NSYN proper)

@(NSEM organization).
This lexical entry produces exactly the same analysis as the morphology
output in (6). The only additional information in this case is introduced by
the template call claiming that the name semantically represents an
organization, but as grammatical functional annotations can be assigned to

morphological tags in the lexicon, this is not to be understood as a

difference.
8 a NP b. |pRED ‘Burépai Unis’
N NTYPE |NSEM IPROPER [PROPER-TYPE organization||
‘ NSYN proper
Eurépai Unidban CASE ine NUM sg, PERS 3

Therefore, no matter which method is used in this particular case, Europai
Unioban parsed as a noun phrase produces the output shown in (8). These
two structures represent the core syntactic levels of LFG: the constituent
structure (8a) that reflects surface-level properties as word order and
constituency, and the functional structure (8b) responsible for language-
invariant features like predicate-argument relations and grammatical

features. For a detailed explanation, see Bresnan (2001).

3.2.2. Form and orthography

Apart form the fact mentioned in section 2.2 that names can also take
the form of acronyms there are several other form-related and
orthographically questionable variations among names, to which attention
must be paid. This subsection reflects patterns that one might come across
when examining data in corpora.
9) a. Magyar Nemzeti Bank VS. MNB

Hungarian National Bank
b. Ady Endre Gimnazium Vs. Ady Gimnazium
Ady Endre Grammar School

The examples in (9) represent the problem referred to above. It is not
uncommon that within the same text a name takes different forms. In some
cases the name is in its full form, while in others it is an acronym, see (9a).
Moreover, in informal texts, elements of names (compared to the full name)
can also be missing, as (9b) shows. However, it is not only form-variation of
this kind that can suggest a sort of inconsistency and make it difficult to
cover such cases, but questions related to orthography can also be raised.
(10) a. iPhone

b. Mastercard vs. MasterCard

c. Noname Ltd. vs. Noname Ltd

d. Foldhitel- és Jelzalogbank vs. *Foldhitel és Jelzalogbank

As parsing is generally case-sensitive (it does matter, for example, if
a lexical entry contains uppercase letters or not), it is of crucial importance
to consider instances like (10a) and (10b). The problem with forms like
(10b) is that they require inserting all the form-variants into the lexicon.
Deciding on the morphological module and not the lexicon to account for

the names, lowercasing before determining the appropriate morphological

features might turn out to be a solution. Utilizing transducers to normalize
input in general (e.g. to remove or add dots in company names and company
type markers) might be beneficial to avoid problems of punctuation and
minor form-alternations of this kind to keep the representation consistent.
Unfortunately, there can still be orthographically ill-formed patterns that are
quite difficult to cover (10d).

3.2.3. Morphological issues

Names in some languages, just like other nouns, are open to
morphological processes, such as suffixation. In Hungarian, certain
inflections are attached to the stem without morphophonological
changes (11), others affect the stem, or the inflection itself as in the case of
assimilation (12).
(11) Kovacs-nak (Kovacs + -nak)

Smith-DAT

‘to Smith’
(12) Janos-sal (Janos + -val)

John-with

‘with John’
In Hungarian, according to the orthography, when the derivational suffix -i
is added to a name stem (to derive an adjective), the initial uppercase letter
has to be lowercased (13).
(13) Vietndm+-i — vietnami

Vietnam + -ese — Vietnamese

If it is the morphological component of the grammar that is
responsible for the lexical-level analysis of forms, then these problems can

be easily overcome: as names can only receive those inflectional suffixes

that common nouns can have, the task is just to configure those suffix
continuation classes to the names in the morphological analyzer that
common nouns are set to. When it is not possible to extend the morphology
module with names, the grammar writer needs to list all the relevant forms

of a name that s/he wants the parser to analyze.

3.2.4. Further issues: syntax and semantics

An even more challenging question that does not seem to have been
covered in detail in implementational models is the syntactic and semantic
representation of names. While single-word name forms are inserted under a
nominal node in the constituent structure, multiword names allow for
exploiting as many different (sub)categories under a branching nominal
node as many tokens the name consists of. According to this view, the
tokens are considered distinct lexical units. However, this also entails that
one of the parts of the name has to be the head of the whole name. An
example from the English ParGram is demonstrated in (14).

(14) .

NP
/\
N N
\ \
John Smith
b.
PRED ‘Smith’

NAME_MOD | PRED ‘John’

NTYPE | NSEM | PROPER |PROPER-TYPE name, NAME-TYPE first name | |
NSYN proper

GEND-SEM male, HUMAN +, NUM sg, PERS 3

NTYPE NSEM | PROPER |PROPER-TYPE name, NAME-TYPE last name | |
NSYN proper

HUMAN +, NUM sg, PERS 3

As the constituent structure in this example illustrates, in the name John
Smith, each part of the name is inserted under a distinct node N, each of
which is a daughter of the NP node (see 14a). The functional structure (14b)
also shows that in this analysis the last name is the head, and the first name
is its modifier. In Hungarian, on the other hand, it is the last name that
comes first in sequential order and inflections are always attached to the
first name. This means that it is the first name that, from the morphological
perspective, calls for treating it as the head, which in turn does not permit to
take the last name as the head. One possibility to avoid this problem is to
represent the full name as a single lexical unit. In the English ParGram there
are also examples for this type of analysis, like Trafalgar Square in (15). (In
highly inflectional languages, like Hungarian, inflectional endings are

attached to the whole lexical complex in this approach.)

(1 5) a. NP b PRED ‘Trafalgar Square’
I\‘I NTYPE |NSEM |PROPER |PROPER-TYPE location ||
NSYN proper
Trafalgar Square NUM sg, PERS 3

The need for a unified and consistent analysis is even more
manifested by instances of brand + type (+subtype) multiword name
constructions (e.g.: ‘Ford Model T’). These patterns might have a preference
for taking each token of multiword names, in general, as separate lexical
items, but this approach still appears to be difficult to implement as reflected
by the treatment of Hungarian full names in this way. On the other hand, a
less economical way of storing whole multiwords, each as a single lexical
item, might require a lot of work on the part of the grammar writer, resulting
in large lexicons, nevertheless, this option poses fewer problems

computationally.

3.3. A case study: names in the Szeged Treebank

The evidence for the high frequency of names in corpora is proved
by the following experiement inteded to extract all the names from the
Szeged Treebank for statistics and for lexicon building purposes. This
treebank is based on a 1.2 million word corpus, in which the texts are
categorized thematically involving written texts collected from a variety of
sources ranging from business papers to essays of students aged 14 to 16
(for details, see Csendes et al. 2005). The results of this study, shown in
Figure 2, demonstrate that 25.904 out of 82.099 sentences (total number)

contain at least one name, which also entails that there is one in every fourth

sentence.
subcorpus Ss Ss with | NEs NE multiword
NEs lemmas | NE lemmas
/business-news/newsml.xml 9574 6735 | 13650 4214 2 810
/compositions/10elb.xml 9 541 1316 1659 753 179
/compositions/10erv.xml 7 604 160 202 147 37
/compositions/8oelb.xml 7575 995 1219 599 156
/computer/cwszt.xml 6676 3219 5699 2410 1373
/computer/win200.xml 3083 1254 2550 735 430
/fiction/1984.xml 6 658 1729 2140 185 56
/fiction/pfred.xml 6485 1421 1692 225 78
/fiction/utas.xml 5415 1 946 2 634 307 92
/law/gazdtar.xml 5734 1657 2119 79 31
/law/szerzj.xml 3544 1166 1764 311 200
/newspapers/hvg.xml 2 369 1286 2623 1469 843
/newspapers/mh.xml 2435 954 1692 971 509
/newspapers/np.xml 4107 1497 2570 1452 732
/newspapers/nv.xml 1299 569 1079 729 385
whole corpus
(all included): 82099 | 25904 | 43292 | 12546 7386

Figure 2: Named entities in the Szeged Treebank

This index is even lower in the case of business news (where, on average,
every second sentence has a name in it) and computer texts and newspaper

articles (in which every third sentence contains a name). Statistics also

indicate that the number of lemmas extracted concerning the whole corpus
is 12.546, which appear in 43.292 different forms, and out of this
considerably high number of name lemmas 7.386 are multiword ones.
Taking a look at the data based on the type of texts might help
decide on the type of source for testing a computational grammar described
in section 3.2 without preparing it for analyzing names. But even those parts
of the corpus in which the number of sentences with names is quite
representative, and except for compositions of students, the parser will still
not provide analysis for at least 21% of the sentences (see line

/fiction/pred.xml in Figure 2).

4. Conclusion

This article demonstrated the basic problems that computational
LFG grammar writers face in connection with parsing structures containing
(proper) names. Augmenting grammar implementations of this kind with a
statistics-based machine learning approach that identifies and extracts
names from the texts to be parsed in a preprocessing phase to build named
entity lexicons, either for morphological analyzers or as part of the lexicons
of the system, might improve parsing efficiency; however, a detailed
analysis of the syntactic inner structure of names is still desirable if it can
reduce the size of such lexicons and introduce a consistent language
independent treatment of names, especially multiword ones, reflecting their

syntactic complexity.

Notes on the author
Gabor Csernyi is a Ph.D. student with special interest in computational linguistics and with

general theoretical interest in generative grammar, mainly Lexical-Functional Grammar.

Acknowledgements

The authors acknowledge that the research reported here is supported, in part, by OTKA
(Hungarian Scientific Research Fund), grant number: K 72983; by the
TAMOP-4.2.1/B-09/1/KONV-2010-0007 project, which is implemented through the New
Hungary Development Plan co-financed by the European Social Fund and the European
Regional Development Fund; and by the TAMOP-4.2.2/B-10/1-2010-0024 project, which

is co-financed by the European Union and the European Social Fund.

References

Bresnan, J. 2001. Lexical-Functional Syntax. Oxford: Blackwell.

Butt, M.; King, T. H.; Nifio, M. E. and Segond, F. 1997. 4 Grammar Writer’s Cookbook.
Stanford: CSLI Publications.

Csendes, D.; Csirik, J.; Gyimdthy, T.; Kocsor, A. 2005. ‘The Szeged Treebank’ in Lecture
Notes in Computer Science: Text, Speech and Dialogue. V. Matousek, P. Mautner
and T. Pavelka (eds.). Berlin: Springer, pp. 123-131.

Kaplan, R.; Maxwell, J.; King, T. H. and Crouch, R. 2004. ‘Integrating Finite-state
Technology with Deep LFG Grammars’ in Proceedings of the ESSLLI'04
Workshop on Combining Shallow and Deep Processing for NLP, pp. 11-20.

Kripke, S. 1980. Naming and Necessity. Oxford: Blackwell.

Laczké, T.; Rékosi, Gy. and Toth, A. 2010. ‘HunGram vs. EngGram in ParGram’ in
CrosSections Volume 1: Selected Papers in Linguistics from the 9th HUSSE
Conference. 1. Hegedlis and S. Martsa (eds.). Pécs: Institute of English Studies,
Faculty of Humanities, University of Pécs, pp 81-95.

Nadeau, D. and Sekine, S. 2007. ‘A survey of named entity recognition and classification’
in Linguisticae Investigationes. 30/1, pp. 3-26.

Simon, E. 2008. ‘Nyelvészeti problémadk a tulajdonnév-felismerés teriiletén’ in LingDok 7.
Nyelvész-doktoranduszok dolgozatai. B. Sinkovics (ed.). Szeged: Doctoral School
in Linguistics, University of Szeged, pp 181-196.

Szarvas, Gy.; Farkas, R.; Felfoldi, L.; Kocsor, A. and Csirik, J. 2006. ‘A highly accurate
Named Entity corpus for Hungarian’ in Proceedings of LREC (2006),
pp- 1957-1960.

Varga, D. and Simon, E. 2007. ‘Hungarian named entity recognition with a maximum

entropy approach’ in Acta Cybernetica. 18/2, pp. 293-301.

